FPF2895C

28 V / 5 A Rated Current Limit Switch with OVP and TRCB

Features

- 28 V / 5 A Capability
- Wide Input Voltage Range: $4 \mathrm{~V} \sim 22 \mathrm{~V}$
- Ultra Low On-Resistance
- Typ. $27 \mathrm{~m} \Omega$ at 5 V and $25^{\circ} \mathrm{C}$
- Adjustable Current Limit with external RSET
- 500 mA ~ 5 A
- Selectable OVLO with OV1 and OV2 Logic Input
$-5.95 \mathrm{~V} \pm 50 \mathrm{mV}$
$-10 \mathrm{~V} \pm 100 \mathrm{mV}$
$-16.8 \mathrm{~V} \pm 300 \mathrm{mV}$
- $23 \mathrm{~V} \pm 460 \mathrm{mV}$
- Selectable ON Polarity
- Selectable Over-Current Behavior
- Auto-Restart Mode
- Current Source Mode
- True Reverse Current Block
- Thermal Shutdown
- Open Drain Fault FLAGB Output
- UL60950-1 \& IEC 60950-1 Certification 5 A Max Loading
- Robust ESD Capability
- $\quad 2$ kV HBM \& 1 kV CDM
- 15 kV Air Discharge \& 8 kV Contact Discharge under IEC 61000-4-2

Description

The FPF2895C features a 28 V and 5 A rated current limit power switch, which offers Over-Current Protection (OCP), Over-Voltage Protection (OVP), and True Reverse Current Block (TRCB) to protect system. It has low On-resistance of typical $27 \mathrm{~m} \Omega$ with WL-CSP can operate over an input voltage range of 4 V to 22 V .
The FPF2895C supports $\pm 10 \%$ of current limit accuracy, over-current range of 500 mA to 2 A and $\pm 5 \%$ of current limit accuracy, over-current range of 2 A to 5 A , flexible operations such as selectable OVP, selectable ON polarity and selectable OCP behavior, which can be optimized according to system requirements.
The FPF2895C is available in a 24-bump, 1.67 mm x 2.60 mm Wafer-Level Chip-Scale Package (WL-CSP) with 0.4 mm pitch.

Applications

- Laptop, Desktop Computing and Monitor
- Power Accessories

Ordering Information

Part Number	Operating Temperature Range	Top Mark	Package	Packing Method
FPF2895CUCX	$-40^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$	3 G	$24-$ Ball, 0.4 mm Pitch WLCSP	Tape \& Reel

Application Diagram

Figure 1. Typical Application

Block Diagram

Figure 2. Functional Block Diagram

Pin Configuration

Pin Configuration (Top View)

Pin Configuration (Bottom View)

Figure 3. 24 Ball WL_CSP, 4×6 Array, 0.4 mm Pitch, $250 \mu \mathrm{~m}$ Ball

Pin Definitions

Name	Bump	Type	Description
VIN	$\begin{gathered} \text { C3, D3, D4, E3, E4, } \\ \text { F3, F4 } \end{gathered}$	Input/Supply	Switch Input and Device Supply
VOUT	$\begin{gathered} \text { C2, D1, D2, E1, E2, } \\ \text { F1, F2 } \end{gathered}$	Output	Switch Output to Load
NC	A1	Dummy	Recommended to connect to GND
ON	A2	Input	Internal pull-down resistor of $1 \mathrm{M} \Omega$ is included. Active polarity is depending on POL state. ${ }^{(1)}$
POL	A4	Input	Enable Polarity Selection. Internal pull-up of $1 \mathrm{M} \Omega$ is included. HIGH (or Floating): Active LOW LOW: Active HIGH ${ }^{(1)}$
FLAGB	A3	Output	Active LOW, open drain output indicates an over-current, under-voltage, over-voltage, or over-temperature state.
ISET	C1	Input	A resistor from ISET to ground set the current limit for the switch. See below selection table 1.
OC_MODE	B2	Input	OCP behavior can be selected. Internal pull-up of $1 \mathrm{M} \Omega$ is included. HIGH (or Floating): Auto-restart mode during over-current condition. LOW: Current source mode during over-current condition. ${ }^{(1)}$
OV1	B3	Input	Over-Voltage Selection Input 1. Internal pull-up of $1 \mathrm{M} \Omega$ is included and see below selection table 2. ${ }^{(1)}$
OV2	C4	Input	Over-Voltage Selection Input 2. Internal pull-up of $1 \mathrm{M} \Omega$ is included and see Table 2. ${ }^{(1)}$
GND	B1, B4	GND	Device Ground

Note:

1. To avoid external noise influence when floating, recommend to connect these pins to a certain level.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters		Min.	Max.	Unit
VIN, VOUT	VIN, VOUT to GND		-0.3	28.0	V
VPIN	ON, POL, OC_MODE, ISET, FLAGB and OVn to GND		-0.3	6.0	V
Isw	Continuous Switch Current			5.5	A
tpd	Total Power Dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			2.08	W
TstG	Storage Junction Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
TJ	Operating Junction Temperature			+150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature (Soldering, 10 Seconds)			+260	${ }^{\circ} \mathrm{C}$
Θ_{JA}	Thermal Resistance, Junction-to-Ambient (1in. ${ }^{2}$ pad of 2 oz. copper)			$60^{(2)}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ESD	Electrostatic Discharge Capability	Human Body Model, ANSI/ESDA/JEDEC JS-001	2		kV
		Charged Device Model, JESD22-C101	1		
	IEC61000-4-2 System Level	Air Discharge	15		
		Contact Discharge	8		

Note:

2. Measured using 2S2P JEDEC std. PCB.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{IN}	Supply Voltage	4.0	22.0	V
$\mathrm{C}_{\mathrm{IN}} / \mathrm{C}_{\text {out }}$	Input and Output Capacitance	1.0		$\mu \mathrm{~F}$
$\mathrm{~T}_{\mathrm{A}}$	Ambient Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathbb{I N}}=4$ to $22 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$; typical values are at $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, $\mathrm{C}_{\mathrm{IN}}=\mathrm{Cout}_{\text {out }}=1 \mu \mathrm{~F}, \mathrm{ON}=\mathrm{HIGH}$, $\mathrm{POL}=\mathrm{OV} 1=\mathrm{OV} 2=\mathrm{OC}$ _MODE $=\mathrm{GND}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions		Min.	Typ.	Max.	Unit
Basic Operation							
VIN	Input Voltage			4		22	V
ISD_IN	VIN Shutdown Current	$\mathrm{V}_{\text {ON }}=\mathrm{OFF}, \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=$ Short to GND			75	100	$\mu \mathrm{A}$
lQ	Quiescent Current	lout $=0 \mathrm{~mA}, \mathrm{~V}_{\text {ON }}=\mathrm{ON}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$		270	330	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$		300	400	
			$\mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}$		350	450	
Ron	On Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, lout $=1 \mathrm{~A}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$		27	39	$\mathrm{m} \Omega$
			$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$		27	39	
			$\mathrm{V}_{\mathrm{IN}}=20 \mathrm{~V}$		27	39	
Ion	ON Input Leakage	Von $=$ VIN or GND				10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IH }}$	ON Input Logic High Voltage	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V} \sim 23 \mathrm{~V}$		1.2			V
$\mathrm{V}_{\text {IL }}$	ON Input Logic Low Voltage	$\mathrm{V}_{\mathrm{IN}}=3 \mathrm{~V} \sim 23 \mathrm{~V}$				0.4	V
$V_{\text {P_Low }}$	FLAGB Output Logic Low Voltage	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, $\mathrm{I}_{\text {SINK }}=5 \mathrm{~mA}$			0.1	0.2	V
ILKg	FLAGB Output High, Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, Switch ON				1	$\mu \mathrm{A}$

Protections

ILIm	Current Limit ${ }^{(3)}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}, \text { RSET }=3.01 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$		1.35	1.50	1.65	
		$\begin{aligned} & \mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}, \mathrm{RSET}_{\text {SE }}=1.54 \mathrm{k} \Omega, \\ & \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{aligned}$		2.85	3.00	3.15	
Vfold	ILIM Foldback Trip Voltage ${ }^{(3)}$	Vout under ILIM Mode			2		V
Ifold	ILIM Foldback Current ${ }^{(3)}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}<\mathrm{V}_{\text {FOLD }}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \\ & \text { OC_MODE }=\text { HIGH } \end{aligned}$			500		mA
		$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}<\mathrm{V}_{\text {FOLD }}, \mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$, OC_MODE $=$ LOW			250		mA
Vuvlo	Under-Voltage Lockout	$\mathrm{V}_{\text {IN }}$ Increasing			2.70	2.95	V
		VIN Decreasing			2.5		
	UVLO Hysteresis				200		mV
Vovlo	Over-Voltage Lockout	OV1=LOW, OV2=LOW	VIN Rising	22.54	23.00	23.46	V
			$\mathrm{V}_{\text {IN }}$ Falling	22.34			
		OV1=LOW, OV2=HIGH	Vin Rising	9.90	10.00	10.10	
			Vin Falling	9.85			
		OV1=HIGH, OV2=LOW	Vin Rising	16.50	16.80	17.10	
			Vin Falling	16.40			
		OV1=HIGH, OV2=HIGH	VIN Rising	5.90	5.95	6.00	
			Vin Falling	5.85			
tovp	OVP Response Time ${ }^{(3)}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{IN}}>\text { VovLo to }^{\mathrm{V}_{\text {out }}=0.9 \times \mathrm{V}_{\text {IN }}} \end{aligned}$				150	ns
$\mathrm{V}_{\text {T_RCB }}$	TRCB Protection Trip Point	Vout - Vin			25	40	mV
$V_{\text {R_RCB }}$	TRCB Protection, Release Point	Vin - Vout			25	40	mV
$\mathrm{t}_{\mathrm{RCB}}$	TRCB Response Time ${ }^{(3)}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, $\mathrm{V}_{\text {ON }}=$ HIGH/LOW			5		$\mu \mathrm{s}$
trCB_Release	TRCB Release Time ${ }^{(3)}$	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, Enabled			1		$\mu \mathrm{s}$
toc	Over Current Response Time ${ }^{(3)}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, Moderate OC			20		$\mu \mathrm{s}$
		$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, Hard Short			5		

Electrical Characteristics

Unless otherwise noted, $\mathrm{V}_{\mathrm{IN}}=4$ to $22 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$; typical values are at $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$, $\mathrm{C}_{\mathrm{IN}}=\mathrm{Cout}_{\text {out }}=1 \mu \mathrm{~F}, \mathrm{ON}=\mathrm{HIGH}$, $\mathrm{POL}=\mathrm{OV} 1=\mathrm{OV} 2=\mathrm{OC} _\mathrm{MODE}=\mathrm{GND}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
Isd_out	VOUT Shutdown Current	Von=OFF, Vout=5 V, VIN $=$ Short to GND			2	$\mu \mathrm{~A}$
TSD	Thermal Shutdown ${ }^{(3)}$	Shutdown Threshold		150		C
		Hysteresis		20		

Dynamic Behavior

toon	Delay On Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$	1	ms
t_{R}	Vout Rise Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$	1	ms
ton	Turn-On Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$	2	ms
tooff	Delay Off Time	RL=100 $\Omega, C_{L}=1 \mu \mathrm{~F}$	10	$\mu \mathrm{s}$
t_{F}	Vout Fall Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$	200	$\mu \mathrm{s}$
toff	Turn-Off Time	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$	210	$\mu \mathrm{s}$
tblank	Over-Current Blanking Time ${ }^{(3)}$	OC_MODE=HIGH	5	ms
trstrt	Auto-Restart Time ${ }^{(3)}$	OC_MODE=HIGH	200	ms
tqual	Over-Current Qualification Time ${ }^{(3)}$	OC_MODE=LOW	5	ms
$t_{\text {deb }}$	FLAGB De-bounce Time ${ }^{(3)}$	Restart-up during or after OC	3	ms
		Restart-up during or after Thermal shutdown	15	
		Restart-up during or after UVLO	1	

Note:

3. Guaranteed by characterization and design, not production test.

Setting Current Limit

FPF2895C current limit is set with an external resistor connected between IsEt and GND. This resistor is selected using the following equation:

$$
\begin{equation*}
R_{S E T}(k \Omega)=\left(\frac{4674.89}{I_{S E T} m A}\right)^{1 / 1.0326} \tag{1}
\end{equation*}
$$

Resistor tolerance of 1% or less is recommended. 5% tolerance can be achieved only when ILIM is set to larger than 2A.

Table 1. ILIM vs. RSET Look-up Table

RSET [k ${ }^{\text {] }}$	ILIM [mA]		
	Min.	Typ.	Max.
8.75	450	500	550
7.35	540	600	660
6.30	630	700	770
5.55	720	800	880
4.95	810	900	990
4.45	900	1000	1100
4.06	990	1100	1210
3.73	1080	1200	1320
3.45	1170	1300	1430
3.21	1260	1400	1540
3.01	1350	1500	1650
2.82	1440	1600	1760
2.66	1530	1700	1870
2.52	1620	1800	1980
2.39	1710	1900	2090
2.28	1900	2000	2100
2.17	1995	2100	2205
2.07	2090	2200	2310
1.99	2185	2300	2415
1.91	2280	2400	2520
1.83	2375	2500	2625
1.77	2470	2600	2730
1.70	2565	2700	2835
1.64	2660	2800	2940
1.59	2755	2900	3045
1.54	2850	3000	3150
1.49	2945	3100	3255
1.44	3040	3200	3360
1.40	3135	3300	3465
1.36	3230	3400	3570
1.32	3325	3500	3675
1.29	3420	3600	3780
1.25	3515	3700	3885
1.22	3610	3800	3990
1.19	3705	3900	4095
1.16	3800	4000	4200
1.14	3895	4100	4305
1.11	3990	4200	4410
1.08	4085	4300	4515
1.06	4180	4400	4620

Table 1. ILIM vs. RSET Look-up Table (Continued)

RSET [k $\mathbf{\Omega})$	ILIM [mA]		
	Min.	Typ.	Max.
$1.04^{(4)}$	4275	4500	4725
1.02	4370	4600	4830
0.99	4465	4700	4935
0.97	4560	4800	5040
0.96	4655	4900	5145
0.94	4750	5000	$5250^{(5)}$

Note:

4. Passed UL\&CB certification with max. 5 A output current.
5. 6 A absolute limit current value. See Figure 9. for protection timing diagram.

Table 2. OVLO Level Selection

OV1	OV2	OVLO
LOW	LOW	$23 \mathrm{~V} \pm 460 \mathrm{mV}$
LOW	HIGH (Floating)	$10 \mathrm{~V} \pm 100 \mathrm{mV}$
HIGH (Floating)	LOW	$16.3 \mathrm{~V} \pm 300 \mathrm{mV}$
HIGH (Floating)	HIGH (Floating)	$5.95 \mathrm{~V} \pm 50 \mathrm{mV}$

Table 3. Device Enable Polarity Selection

POL	ON	Device State	ON Polarity
LOW	LOW (Floating)	OFF	
LOW	HIGH	ON	Active LOW
HIGH (Floating)	LOW (Floating)	ON	
HIGH (Floating)	HIGH	OFF	

Timing Diagrams

Figure 4. Normal ON/OFF Operation by ON (POL=GND)

Figure 5. OVLO Operation (POL=GND \& FLAGB is pulled up with an external VIO)

Figure 6. Current Limit Operation (OC_MODE=HIGH \& FLAGB is pulled up with an external VIO)

Figure 7. Current Limit Operation (OC_MODE=LOW \& FLAGB is pulled up with an external VIO)

Figure 8. TRCB Operation (Device is Enabled)

Figure 9. VOUT Hard Short to GND (OC_MODE=HIGH \& FLAGB is pulled up with an external VIO)
The table below pertains to the Marketing outline drawing on the following page.
Product-Specific Dimensions

D	E	X	Y
$2600 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$1670 \mu \mathrm{~m} \pm 30 \mu \mathrm{~m}$	$235 \mu \mathrm{~m} \pm 18 \mu \mathrm{~m}$	$300 \mu \mathrm{~m} \pm 18 \mu \mathrm{~m}$

Physical Dimensions

Figure 10 - 24-Ball, 4×6 Array, 0.4 mm Pitch, Wafer-Level Chip-Scale Package (WLCSP)

> ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liabitity, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor	N. American Technical Support: 800-282-9855 Toll Free	ON Semiconductor Website: www.onsemi.com
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA	USA/Canada.	
Phone: $303-675-2175$ or $800-344-3860$ Toll Free USA/Canada	Europe, Middle East and Africa Technical Support:	Order Literature: http://mww.onsemi.com/orderlit
Fax: $303-675-2176$ or 800-344-3867 Toll Free USA/Canada	Phone: 421337902910	
Email: orderlit@onsemi.com	Japan Customer Focus Center	
Phone: $81-3-5817-1050$	For additional information, please contact your loca	
Sales Representative		

