

TSZ121, TSZ122, TSZ124

Very high accuracy (5 µV) zero drift micropower 5 V operational amplifiers

Datasheet - production data

Features

- Very high accuracy and stability: offset voltage 5 μV max at 25 °C, 8 μV over full temperature range (-40 °C to 125 °C)
- Rail-to-rail input and output
- Low supply voltage: 1.8 5.5 V
- Low power consumption: 40 μA max. at 5 V
- Gain bandwidth product: 400 kHz
- High tolerance to ESD: 4 kV HBM
- Extended temperature range: -40 to 125 °C
- Micro-packages: SC70-5, DFN8 2x2, and QFN16 3x3

Benefits

- Higher accuracy without calibration
- Accuracy virtually unaffected by temperature change

Related products

See TSV711 or TSV731 for continuous-time precision amplifiers

Applications

- Battery-powered applications
- Portable devices
- Signal conditioning
- Medical instrumentation

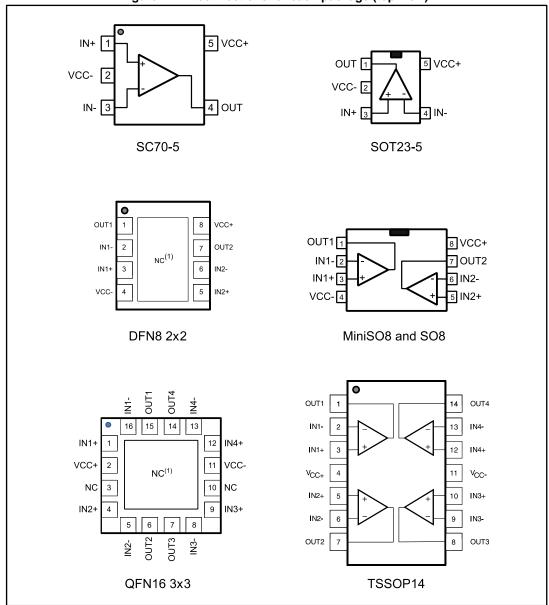
Description

The TSZ12x series of high precision operational amplifiers offer very low input offset voltages with virtually zero drift.

TSZ121 is the single version, TSZ122 the dual version, and TSZ124 the quad version, with pinouts compatible with industry standards.

The TSZ12x series offers rail-to-rail input and output, excellent speed/power consumption ratio, and 400 kHz gain bandwidth product, while consuming less than 40 μ A at 5 V. The devices also feature an ultra-low input bias current.

These features make the TSZ12x family ideal for sensor interfaces, battery-powered applications and portable applications.


Contents

1 Package pin connections2 Absolute maximum ratings and operation	ng conditions4
3 Electrical characteristics	<u>5</u>
4 Electrical characteristic curves	
5 Application information	
5.1 Operation theory	
5.1.2 Frequency domain	
5.3 Input pin voltage ranges	
5.4 Rail-to-rail input	
5.5 Input offset voltage drift over tempera	
5.6 Rail-to-rail output	
5.7 Capacitive load	
5.8 PCB layout recommendations	
5.9 Optimized application recommendation	on19
5.10 EMI rejection ration (EMIRR)	20
5.11 Application examples	20
5.11.1 Oxygen sensor	20
·	ifier21
5	21
6 Package information	23
6.1 SC70-5 (or SOT323-5) package infor	mation24
6.2 SOT23-5 package information	25
6.3 DFN8 2x2 package information	27
6.4 MiniSO8 package information	29
6.5 SO8 package information	
6.6 QFN16 3x3 package information	31
6.7 TSSOP14 package information	
7 Ordering information	
8 Revision history	

1 Package pin connections

Figure 1: Pin connections for each package (top view)

1. The exposed pads of the DFN8 2x2 and the QFN16 3x3 can be connected to VCC- or left floating.

2 Absolute maximum ratings and operating conditions

Table 1: Absolute maximum ratings (AMR)

Symbol	Parameter		Value	Unit
Vcc	Supply voltage (1)	6		
Vid	Differential input voltage (2)		±Vcc	V
Vin	Input voltage (3)		(V _{CC} -) - 0.2 to (V _{CC} +) + 0.2	
lin	Input current (4)		10	mA
T _{stg}	Storage temperature		-65 to 150	°C
Tj	Maximum junction temperature		150	
		SC70-5	205	
		SOT23-5	250	
		DFN8 2x2	57	
R _{thja}	Thermal resistance junction to ambient (5)(6)	MiniSO8	190	°C/W
		SO8	125	
		QFN16 3x3	39	
		100		
	HBM: human body model (7)		4	kV
ESD	ESD MM: machine model (8)		300	V
	CDM: charged device model (9)	1.5	kV	
	Latch-up immunity		200	mA

Table 2: Operating conditions

rance in operaning committee							
Symbol	Parameter	Value	Unit				
Vcc	Supply voltage	1.8 to 5.5	\/				
V _{icm}	Common mode input voltage range	(V_{CC-}) - 0.1 to (V_{CC+}) + 0.1	V				
Toper	Operating free air temperature range	-40 to 125	ů				

⁽¹⁾All voltage values, except the differential voltage are with respect to the network ground terminal.

⁽²⁾The differential voltage is the non-inverting input terminal with respect to the inverting input terminal.

⁽³⁾V_{cc} - V_{in} must not exceed 6 V, Vin must not exceed 6 V

⁽⁴⁾Input current must be limited by a resistor in series with the inputs.

⁽⁵⁾Rth are typical values.

⁽⁶⁾Short-circuits can cause excessive heating and destructive dissipation.

 $^{^{(7)}}$ Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.

 $^{^{(8)}}$ Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.

⁽⁹⁾Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground.

3 Electrical characteristics

Table 3: Electrical characteristics at $V_{CC+} = 1.8 \text{ V}$ with $V_{CC-} = 0 \text{ V}$, $V_{icm} = V_{CC}/2$, $T = 25 \,^{\circ}\text{C}$, and $R_L = 10 \, \text{k}\Omega$ connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		DC performance			1	
.,		T = 25 °C		1	5	
V_{io}	Input offset voltage	-40 °C < T < 125 °C			8	μV
ΔV _{io} /ΔΤ	Input offset voltage drift (1)	-40 °C < T < 125 °C		10	30	nV/°C
	Input bias current	T = 25 °C		50	200 (2)	
l _{ib}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C			300 (2)	
	Input offset current	T = 25 °C		100	400 (2)	рA
l _{io}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C			600 ⁽²⁾	
	Common mode rejection	T = 25 °C	110	122		
CMR	ratio, 20 log ($\Delta V_{icm}/\Delta V_{io}$), $V_{ic} = 0 \text{ V to } V_{CC}$, $V_{out} = V_{CC}/2$, $R_L > 1 \text{ M}\Omega$	-40 °C < T < 125 °C	110			dB
Δ.	Large signal voltage gain,	T = 25 °C	118	135		
A_{vd}	$V_{out} = 0.5 \text{ V to } (V_{CC} - 0.5 \text{ V})$	-40 °C < T < 125 °C	110			
	I link lavel autout valta ea	T = 25 °C			30	
Vон	High-level output voltage	-40 °C < T < 125 °C			70	\/
\/-·	Low lovel output voltage	T = 25 °C			30	mV
Vol	Low-level output voltage	-40 °C < T < 125 °C			70)
lout		T = 25 °C	7	8		
	I_{sink} ($V_{out} = V_{CC}$)	-40 °C < T < 125 °C	6			^
	1 (// 0.1/)	T = 25 °C	5	7		mA
	I _{source} (V _{out} = 0 V)	-40 °C < T < 125 °C	4			
	Supply current	T = 25 °C		28	40	
Icc	(per amplifier, $V_{out} = V_{CC}/2$, $R_L > 1 M\Omega$)	-40 °C < T < 125 °C			40	μΑ
		AC performance				
GBP	Gain bandwidth product			400		kHz
F_{u}	Unity gain frequency			300		KI IZ
φm	Phase margin	R_L = 10 k Ω , C_L = 100 pF		55		Degrees
Gm	Gain margin			17		dB
SR	Slew rate (3)			0.17		V/µs
ts	Setting time	To 0.1 %, V_{in} = 1 Vp - p , R_L = 10 $k\Omega$, C_L = 100 pF		50		μs
-	Equivalent input noise	f = 1 kHz		60		nV/√Hz
en	voltage	f = 10 kHz		60		IIV/VIIZ
∫en	Low-frequency peak-to- peak input noise	Bandwidth, f = 0.1 to 10 Hz		1.1		μVpp

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Cs	Channel separation	f = 100 Hz		120		dB
	luitialiantian tima	T = 25 °C		50		
t _{init}	Initialization time	-40 °C < T < 125 °C		100		μs

Table 4: Electrical characteristics at $V_{CC+} = 3.3 \text{ V}$ with $V_{CC-} = 0 \text{ V}$, $V_{icm} = V_{CC}/2$, $T = 25 ^{\circ}\text{C}$, and $R_1 = 10 \text{ k}\Omega$ connected to $V_{CC}/2$ (unless otherwise specified)

and R_L = 10 k Ω connected to $V_{CC}/2$ (unless otherwise specified)									
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit			
	·	DC performance							
1/	long to effect years	T = 25 °C		1	5	\/			
V_{io}	Input offset voltage	-40 °C < T < 125 °C			8	μV			
ΔV _{io} /ΔΤ	Input offset voltage drift (1)	-40 °C < T < 125 °C		10	30	nV/°C			
	Input bias current	T = 25 °C		60	200 (2)				
l _{ib}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C			300 (2)	- A			
1.	Input offset current	T = 25 °C		120	400 (2)	pΑ			
l _{io}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C			600 (2)				
	Common mode rejection	T = 25 °C	115	128					
CMR	ratio, 20 log ($\Delta V_{icm}/\Delta V_{io}$), $V_{ic} = 0 \text{ V to V}_{CC}$, $V_{out} = V_{CC}/2$, $R_L > 1 \text{ M}\Omega$	-40 °C < T < 125 °C	115			dB			
۸	Large signal voltage gain,	T = 25 °C	118	135					
A_{vd}	$V_{out} = 0.5 \text{ V to (Vcc - 0.5 V)}$	-40 °C < T < 125 °C	110						
	I light level autout valtage	T = 25 °C			30				
Vон	High-level output voltage	-40 °C < T < 125 °C			70	\/			
\/	Lave lavel autout valtage	T = 25 °C			30	mV			
Vol	Low-level output voltage	-40 °C < T < 125 °C			70				
	1 ()/)/)	T = 25 °C	15	18					
	Isink (Vout = Vcc)	-40 °C < T < 125 °C	12			A			
l _{out}	1 ()/ 0.1/)	T = 25 °C	14	16		mA			
	I _{source} (V _{out} = 0 V)	-40 °C < T < 125 °C	10						
	Supply current	T = 25 °C		29	40				
Icc	(per amplifier, $V_{out} = V_{CC}/2$, $R_L > 1 M\Omega$)	-40 °C < T < 125 °C			40	μA			
		AC performance							
GBP	Gain bandwidth product			400		- -			
F_u	Unity gain frequency	P 10 k0 C: - 100 pF		300		kHz			
φm	Phase margin	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$		56		Degrees			
Gm	Gain margin			19		dB			

⁽¹⁾See Section 5.5: "Input offset voltage drift over temperature". Input offset measurements are performed on x100 gain configuration. The amplifiers and the gain setting resistors are at the same temperature.

⁽²⁾Guaranteed by design

⁽³⁾Slew rate value is calculated as the average between positive and negative slew rates.

Symbol	Parameter Conditions		Min.	Тур.	Max.	Unit	
SR	Slew rate (3)			0.19		V/µs	
ts	Setting time	To 0.1 %, V_{in} = 1 Vp-p, R_L = 10 kΩ, C_L = 100 pF		50		μs	
	Equivalent input noise	f = 1 kHz		40		nV/√Hz	
e n	voltage	f = 10 kHz		40		IIV/VIIZ	
∫en	Low-frequency peak-to- peak input noise	Bandwidth, f = 0.1 to 10 Hz		0.8		μ∨рр	
Cs	Channel separation f = 100 Hz			120		dB	
4	Initialization time	T = 25 °C		50		110	
t _{init}	minanzation time	-40 °C < T < 125 °C		100		μs	

Table 5: Electrical characteristics at $V_{CC+} = 5$ V with $V_{CC-} = 0$ V, $V_{icm} = V_{CC}/2$, T = 25 °C, and R_L = 10 k Ω connected to $V_{CC}/2$ (unless otherwise specified)

and RL = 10 kg connected to vcc/2 (unless otherwise specified)											
Symbol	Parameter	Min.	Тур.	Max.	Unit						
DC performance											
.,	Input offeet voltege	T = 25 °C		1	5	\/					
Vio	Input offset voltage	-40 °C < T < 125 °C			8	μV					
$\Delta V_{io}/\Delta T$	Input offset voltage drift (1)	-40 °C < T < 125 °C		10	30	nV/°C					
	Input bias current	T = 25 °C		70	200 (2)						
l _{ib}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C			300 (2)	A					
	Input offset current	T = 25 °C		140	400 (2)	pА					
l _{io}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C			600 ⁽²⁾						
	Common mode rejection	T = 25 °C	115	136							
CMR	ratio. 20 log ($\Delta V_{icm}/\Delta V_{io}$).	-40 °C < T < 125 °C	115								
	Supply voltage rejection	T = 25 °C	120	140							
SVR	ratio, 20 log ($\Delta V_{CC}/\Delta V_{io}$), $V_{CC} = 1.8 \text{ V to } 5.5 \text{ V}$, $V_{out} = V_{CC}/2$, $R_L > 1 \text{ M}\Omega$	-40 °C < T < 125 °C	120			dB					
A_{Vd}	Large signal voltage gain,	T = 25 °C	120	135							
Avd	$V_{out} = 0.5 \text{ V to } (V_{CC} - 0.5 \text{ V})$	-40 °C < T < 125 °C	110								
		$V_{RF}=100\;mV_p,f=400\;MHz$		84							
EMIRR	EMI rejection rate = -20 log	$V_{RF}=100\;mV_p,f=900\;MHz$		87							
(3)	(V _{RFpeak} /ΔV _{io})	$V_{RF} = 100 \text{ mV}_{p}, f = 1800 \text{ MHz}$		90							
		$V_{RF} = 100 \text{ mV}_p, f = 2400 \text{ MHz}$		91							
Vон	High-level output voltage	T = 25 °C			30	mV					

⁽¹⁾See Section 5.5: "Input offset voltage drift over temperature". Input offset measurements are performed on x100 gain configuration. The amplifiers and the gain setting resistors are at the same temperature.

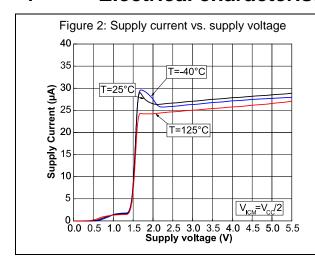
⁽²⁾Guaranteed by design.

⁽³⁾Slew rate value is calculated as the average between positive and negative slew rates.

Electrical characteristics

TSZ121, TSZ122, TSZ124

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		-40 °C < T < 125 °C			70	
\/	Low lovel output voltoge	T = 25 °C			30	
V _{OL}	Low-level output voltage	-40 °C < T < 125 °C			70	
	1 ()/ \/ \	T = 25 °C	15	18		
	I_{sink} ($V_{out} = V_{CC}$)	-40 °C < T < 125 °C	14			Л
lout	1 ()/ 0.1/)	T = 25 °C	14	17		mA
	$I_{\text{source}} (V_{\text{out}} = 0 \text{ V})$	-40 °C < T < 125 °C	12			
	Supply current (per	T = 25 °C		31	40	
Icc	amplifier, $V_{out} = V_{CC}/2$, $R_L > 1 M\Omega$)	-40 °C < T < 125 °C			40	μΑ
		AC performance				
GBP	Gain bandwidth product			400		kHz
Fu	Unity gain frequency			300		KHZ
φm	Phase margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		53		Degrees
Gm	Gain margin			19		dB
SR	Slew rate (4)			0.19		V/µs
ts	Setting time	To 0.1 %, V_{in} = 100 mVp-p, R_L = 10 kΩ, C_L = 100 pF		10		μs
	Equivalent input noise	f = 1 kHz		37		nV/√Hz
еn	voltage	f = 10 kHz		37		IIV/VIIZ
∫en	Low-frequency peak-to- peak input noise	Bandwidth, f = 0.1 to 10 Hz		0.75		μVpp
Cs	Channel separation	f = 100 Hz		120		dB
	In it is limpting times	T = 25 °C		50		
t _{init}	Initialization time	-40 °C < T < 125 °C		100		μs

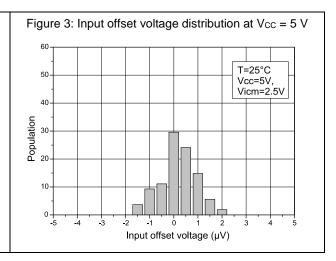
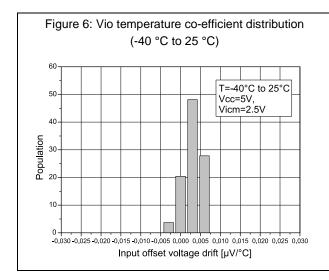
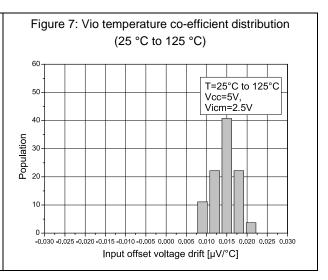

⁽¹⁾See Section 5.5: "Input offset voltage drift over temperature". Input offset measurements are performed on x100 gain configuration. The amplifiers and the gain setting resistors are at the same temperature.

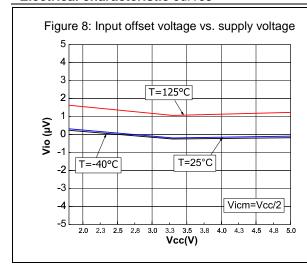
⁽²⁾Guaranteed by design

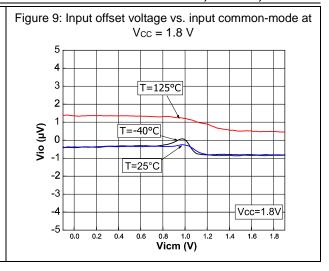
⁽³⁾Tested on SC70-5 package

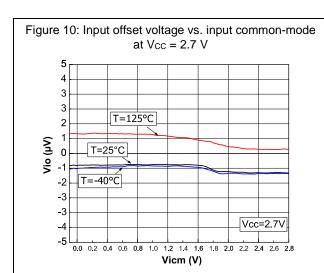
⁽⁴⁾Slew rate value is calculated as the average between positive and negative slew rates.

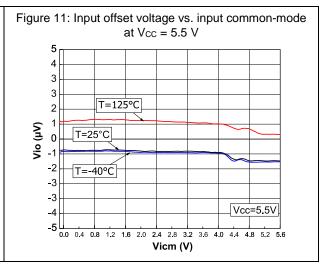
4 Electrical characteristic curves

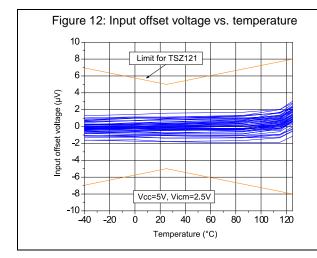




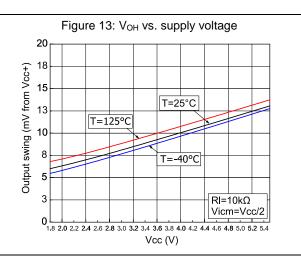

Figure 4: Input offset voltage distribution at $V_{CC} = 3.3 \text{ V}$ T=25°C
Vcc=3.3V,
Vicm=1.65V

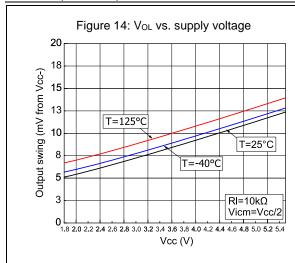
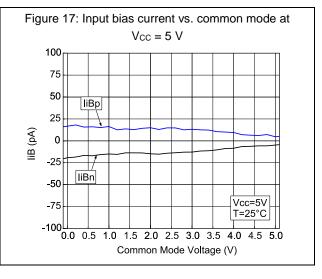
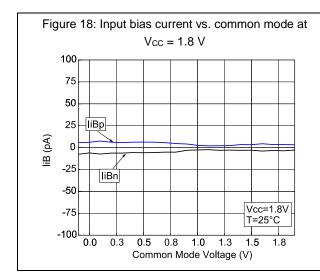

Input offset voltage (μ V)


Figure 5: Input offset voltage distribution at $V_{CC} = 1.8 \text{ V}$ $V_{CC} = 1.8 \text{ V}$







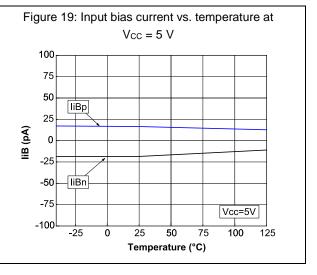
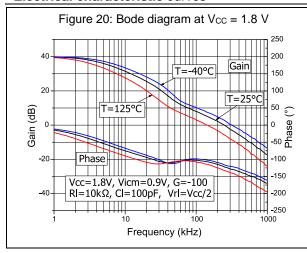
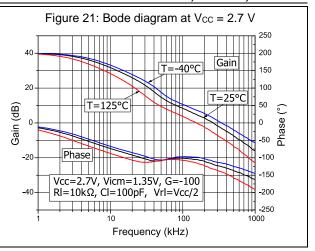
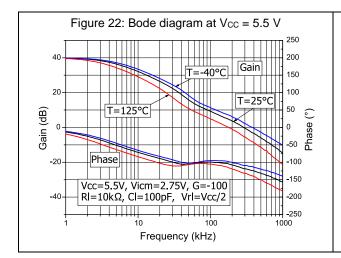
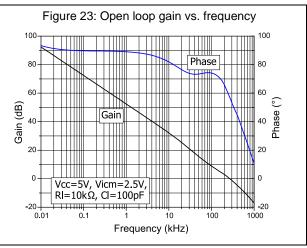

Figure 15: Output current vs. output voltage at $V_{CC} = 1.8 V$ 30 20 Output Current (mA) T=25°C T=-40°C T=125°C T=125°C T=25°C T=-40°C -20 Vcc=1.8V -₃₀∟ 0.0 0.3 0.5 0.8 1.0 1.5 Output Voltage (V)

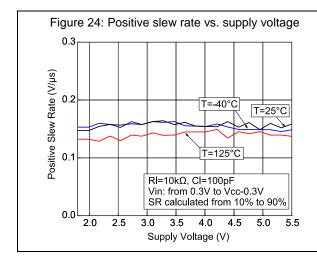
Figure 16: Output current vs. output voltage at Vcc = 5.5 V

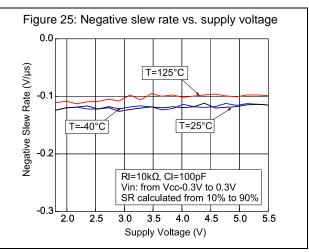

| Vcc = 5.5 V | T=25°C | T=125°C | T=125°C | T=40°C | T=40

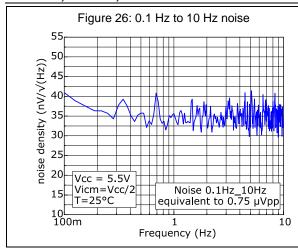







TSZ121, TSZ122, TSZ124





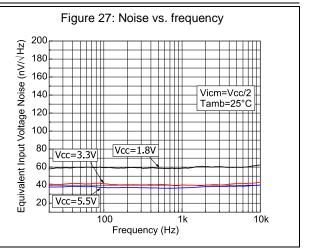
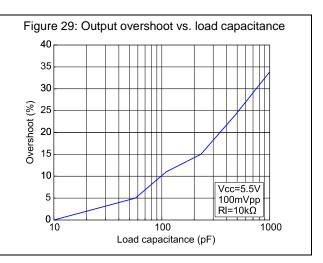
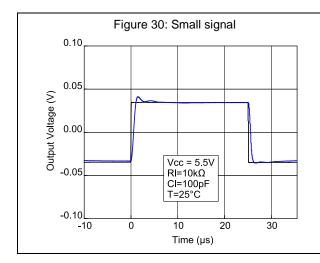
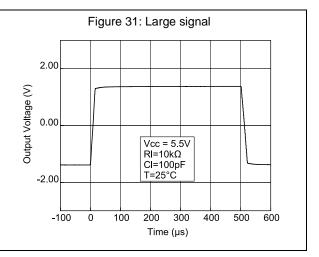
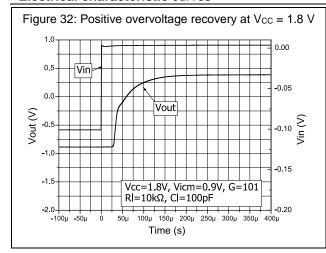
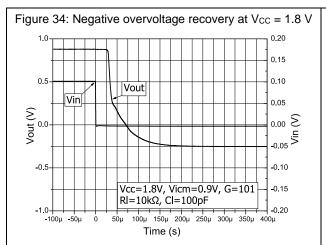
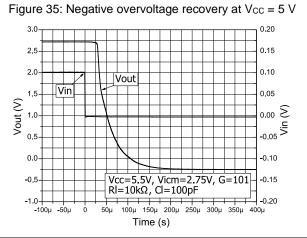
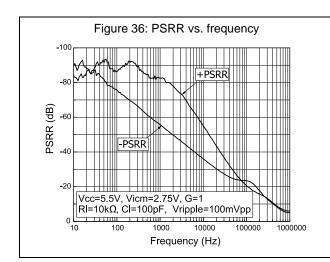
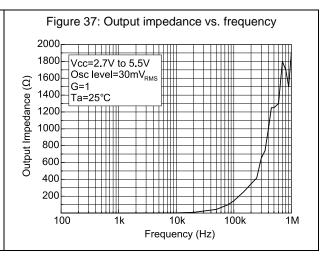







Figure 28: Noise vs. frequency and temperature Equivalent Input Voltage Noise (nV/√Hz) 180 160 Vicm=Vcc/2 140 Vcc=5.5V 120 100 80 125°C 60 40 20 100 Frequency (Hz)









5 Application information

5.1 Operation theory

The TSZ121, TSZ122, and TSZ124 are high precision CMOS devices. They achieve a low offset drift and no 1/f noise thanks to their chopper architecture. Chopper-stabilized amps constantly correct low-frequency errors across the inputs of the amplifier.

Chopper-stabilized amplifiers can be explained with respect to:

- Time domain
- Frequency domain

5.1.1 Time domain

The basis of the chopper amplifier is realized in two steps. These steps are synchronized thanks to a clock running at 400 kHz.

Figure 38: Block diagram in the time domain (step 1)

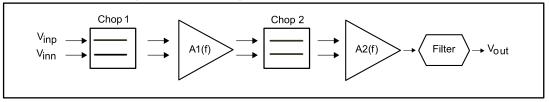


Figure 39: Block diagram in the time domain (step 2)

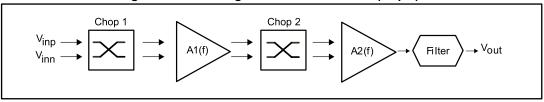


Figure 38: "Block diagram in the time domain (step 1)" shows step 1, the first clock cycle, where V_{io} is amplified in the normal way.

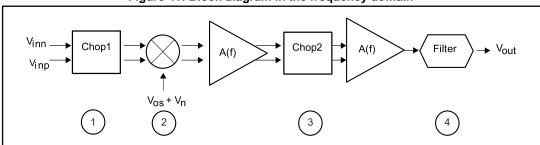
Figure 39: "Block diagram in the time domain (step 2)" shows step 2, the second clock cycle, where Chop1 and Chop2 swap paths. At this time, the V_{io} is amplified in a reverse way as compared to step 1.

At the end of these two steps, the average Vio is close to zero.

The A2(f) amplifier has a small impact on the V_{io} because the V_{io} is expressed as the input offset and is consequently divided by A1(f).

In the time domain, the offset part of the output signal before filtering is shown in *Figure 40:* "Vio cancellation principle".

Figure 40: Vio cancellation principle


The low pass filter averages the output value resulting in the cancellation of the Vio offset.

The 1/f noise can be considered as an offset in low frequency and it is canceled like the V_{io} , thanks to the chopper technique.

5.1.2 Frequency domain

The frequency domain gives a more accurate vision of chopper-stabilized amplifier architecture.

Figure 41: Block diagram in the frequency domain

The modulation technique transposes the signal to a higher frequency where there is no 1/f noise, and demodulate it back after amplification.

- 1. According to *Figure 41: "Block diagram in the frequency domain"*, the input signal V_{in} is modulated once (Chop1) so all the input signal is transposed to the high frequency domain.
- 2. The amplifier adds its own error (V_{io} (output offset voltage) + the noise V_n (1/f noise)) to this modulated signal.
- 3. This signal is then demodulated (Chop2), but since the noise and the offset are modulated only once, they are transposed to the high frequency, leaving the output signal of the amplifier without any offset and low frequency noise. Consequently, the input signal is amplified with a very low offset and 1/f noise.
- 4. To get rid of the high frequency part of the output signal (which is useless) a low pass filter is implemented.

To further suppress the remaining ripple down to a desired level, another low pass filter may be added externally on the output of the TSZ121, TSZ122, or TSZ124 device.

5.2 Operating voltages

TSZ121, TSZ122, and TSZ124 devices can operate from 1.8 to 5.5 V. The parameters are fully specified for 1.8 V, 3.3 V, and 5 V power supplies. However, the parameters are very stable in the full $V_{\rm CC}$ range and several characterization curves show the TSZ121, TSZ122, and TSZ124 device characteristics at 1.8 V and 5.5 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 to 125 ° C.

5.3 Input pin voltage ranges

TSZ121, TSZ122, and TSZ124 devices have internal ESD diode protection on the inputs. These diodes are connected between the input and each supply rail to protect the input MOSFETs from electrical discharge.

If the input pin voltage exceeds the power supply by 0.5 V, the ESD diodes become conductive and excessive current can flow through them. Without limitation this over current can damage the device.

In this case, it is important to limit the current to 10 mA, by adding resistance on the input pin, as described in *Figure 42: "Input current limitation"*.

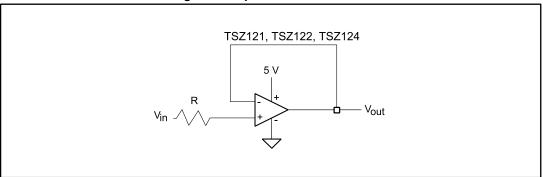


Figure 42: Input current limitation

5.4 Rail-to-rail input

TSZ121, TSZ122, and TSZ124 devices have a rail-to-rail input, and the input common mode range is extended from (V_{CC}) - 0.1 V to (V_{CC+}) + 0.1 V.

5.5 Input offset voltage drift over temperature

The maximum input voltage drift variation over temperature is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations.

The maximum input voltage drift over temperature is computed using Equation 1.

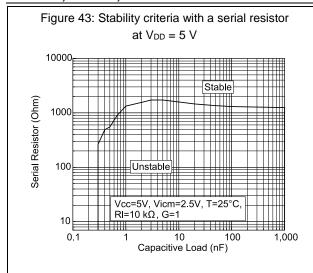
Equation 1

$$\frac{\Delta V_{io}}{\Delta T} = \text{max} \left| \frac{V_{io}(T) - V_{io}(25 \, ^{\circ}\text{C})}{T - 25 \, ^{\circ}\text{C}} \right|$$

Where T = -40 °C and 125 °C.

The TSZ121, TSZ122, and TSZ124 datasheet maximum value is guaranteed by measurements on a representative sample size ensuring a C_{pk} (process capability index) greater than 1.3.

5.6 Rail-to-rail output


The operational amplifier output levels can go close to the rails: to a maximum of 30 mV above and below the rail when connected to a 10 k Ω resistive load to $V_{CC}/2$.

5.7 Capacitive load

Driving large capacitive loads can cause stability problems. Increasing the load capacitance produces gain peaking in the frequency response, with overshoot and ringing in the step response. It is usually considered that with a gain peaking higher than 2.3 dB an op amp might become unstable.

Generally, the unity gain configuration is the worst case for stability and the ability to drive large capacitive loads.

Figure 43: "Stability criteria with a serial resistor at VDD = 5 V" and Figure 44: "Stability criteria with a serial resistor at VDD = 1.8 V" show the serial resistor that must be added to the output, to make a system stable. Figure 45: "Test configuration for Riso" shows the test configuration using an isolation resistor, Riso.

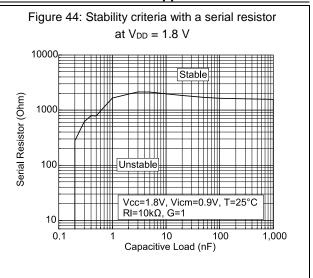
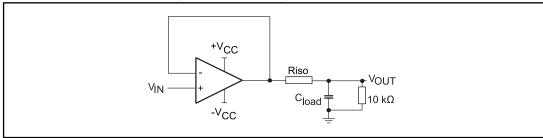



Figure 45: Test configuration for Riso

5.8 PCB layout recommendations

Particular attention must be paid to the layout of the PCB, tracks connected to the amplifier, load, and power supply. The power and ground traces are critical as they must provide adequate energy and grounding for all circuits. Good practice is to use short and wide PCB traces to minimize voltage drops and parasitic inductance.

In addition, to minimize parasitic impedance over the entire surface, a multi-via technique that connects the bottom and top layer ground planes together in many locations is often used.

The copper traces that connect the output pins to the load and supply pins should be as wide as possible to minimize trace resistance.

5.9 Optimized application recommendation

TSZ121, TSZ122, and TSZ124 devices are based on chopper architecture. As they are switched devices, it is strongly recommended to place a 0.1 μ F capacitor as close as possible to the supply pins.

A good decoupling has several advantages for an application. First, it helps to reduce electromagnetic interference. Due to the modulation of the chopper, the decoupling capacitance also helps to reject the small ripple that may appear on the output.

TSZ121, TSZ122, and TSZ124 devices have been optimized for use with 10 k Ω in the feedback loop. With this, or a higher value of resistance, these devices offer the best performance.

5.10 EMI rejection ration (EMIRR)

The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational amplifiers. An adverse effect that is common to many op amps is a change in the offset voltage as a result of RF signal rectification.

The TSZ121, TSZ122, and TSZ124 have been specially designed to minimize susceptibility to EMIRR and show an extremely good sensitivity. *Figure 46: "EMIRR on IN+ pin"* shows the EMIRR IN+ of the TSZ121, TSZ122, and TSZ124 measured from 10 MHz up to 2.4 GHz.

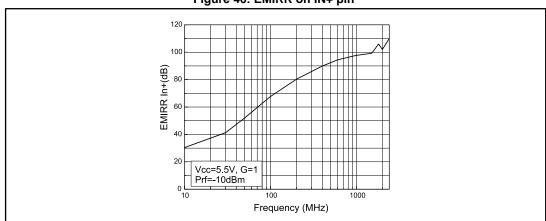


Figure 46: EMIRR on IN+ pin

5.11 Application examples

5.11.1 Oxygen sensor

The electrochemical sensor creates a current proportional to the concentration of the gas being measured. This current is converted into voltage thanks to R resistance. This voltage is then amplified by TSZ121, TSZ122, and TSZ124 devices (see *Figure 47: "Oxygen sensor principle schematic"*).

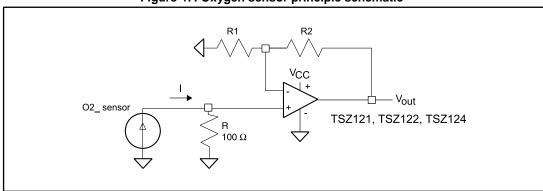
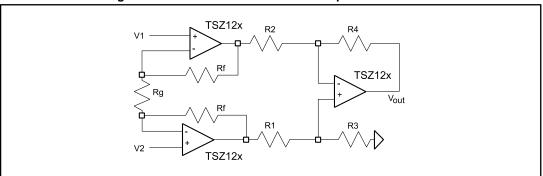


Figure 47: Oxygen sensor principle schematic

The output voltage is calculated using Equation 2:

Equation 2

$$V_{\text{out}} = (I \times R - V_{\text{io}}) \times \left(\frac{R_2}{R_1} + 1\right)$$


As the current delivered by the O2 sensor is extremely low, the impact of the V_{io} can become significant with a traditional operational amplifier. The use of the chopper amplifier of the TSZ121, TSZ122, or TSZ124 is perfect for this application.

In addition, using TSZ121, TSZ122, or TSZ124 devices for the O2 sensor application ensures that the measurement of O2 concentration is stable even at different temperature thanks to a very good $\Delta V_{io}/\Delta T$.

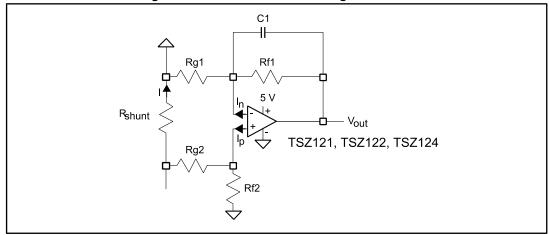
5.11.2 Precision instrumentation amplifier

The instrumentation amplifier uses three op amps. The circuit, shown in *Figure 48:* "Precision instrumentation amplifier schematic", exhibits high input impedance, so that the source impedance of the connected sensor has no impact on the amplification.

Figure 48: Precision instrumentation amplifier schematic

The gain is set by tuning the Rg resistor. With R1 = R2 and R3 = R4, the output is given by *Equation 3*.

Equation 3


$$V_{out} = (V_2 - V_1) \left[\frac{R_4}{R_2} \cdot \frac{2R_f}{R_g} + 1 \right]$$

The matching of R1, R2 and R3, R4 is important to ensure a good common mode rejection ratio (CMR).

5.11.3 Low-side current sensing

Power management mechanisms are found in most electronic systems. Current sensing is useful for protecting applications. The low-side current sensing method consists of placing a sense resistor between the load and the circuit ground. The resulting voltage drop is amplified using TSZ121, TSZ122, and TSZ124 devices (see *Figure 49: "Low-side current sensing schematic"*).

Figure 49: Low-side current sensing schematic

Vout can be expressed as follows:

Equation 4

Assuming that $R_{f2} = R_{f1} = R_f$ and $R_{g2} = R_{g1} = R_g$, *Equation 4* can be simplified as follows:

Equation 5

$$V_{out} = R_{shunt} \times I\left(\frac{R_f}{R_g}\right) - V_{io}\left(1 + \frac{R_f}{R_g}\right) + R_f \times I_{io}$$

The main advantage of using the chopper of the TSZ121, TSZ122, and TSZ124, for a low-side current sensing, is that the errors due to V_{io} and I_{io} are extremely low and may be neglected.

Therefore, for the same accuracy, the shunt resistor can be chosen with a lower value, resulting in lower power dissipation, lower drop in the ground path, and lower cost.

Particular attention must be paid on the matching and precision of R_{g1} , R_{g2} , R_{f1} , and R_{f2} , to maximize the accuracy of the measurement.

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

6.1 SC70-5 (or SOT323-5) package information

Figure 50: SC70-5 (or SOT323-5) package outline

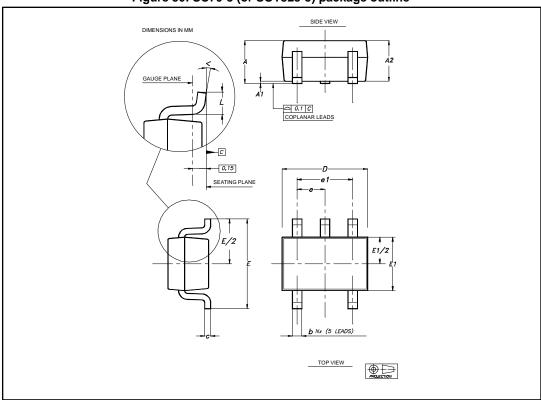


Table 6: SC70-5 (or SOT323-5) mechanical data

	Dimensions								
Ref.	Millimeters			Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α	0.80		1.10	0.032		0.043			
A1			0.10			0.004			
A2	0.80	0.90	1.00	0.032	0.035	0.039			
b	0.15		0.30	0.006		0.012			
С	0.10		0.22	0.004		0.009			
D	1.80	2.00	2.20	0.071	0.079	0.087			
E	1.80	2.10	2.40	0.071	0.083	0.094			
E1	1.15	1.25	1.35	0.045	0.049	0.053			
е		0.65			0.025				
e1		1.30			0.051				
L	0.26	0.36	0.46	0.010	0.014	0.018			
<	0°		8°	0°		8°			

6.2 SOT23-5 package information

Figure 51: SOT23-5 package outline

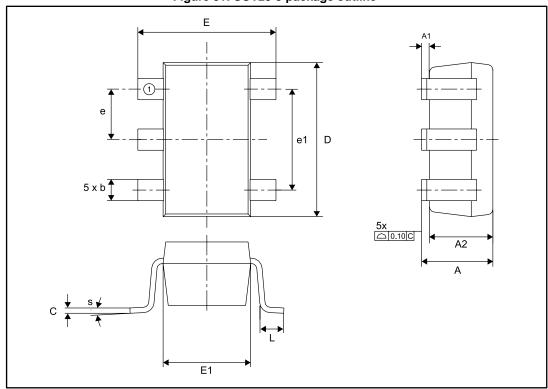
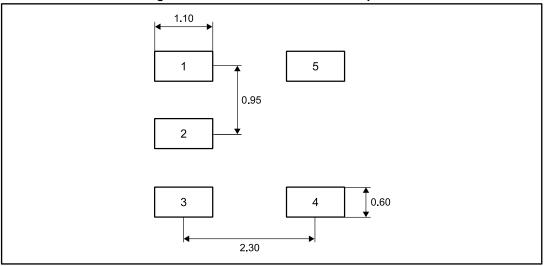



Table 7: SOT23-5 mechanical data

	Dimensions							
Ref.		Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.		
А			1.45			0.057		
A1		0.00	0.15		0.000	0.006		
A2	1.15	0.90	1.30	0.045	0.035	0.051		
b		0.30	0.50		0.012	0.020		
С		0.08	0.22		0.003	0.009		
D	2.90			0.114				
Е	2.80			0.110				
E1	1.60			0.063				
е	0.95			0.037				
e1	1.90			0.075				
L	0.45	0.30	0.60	0.018	0.012	0.024		
S	4	0	8	4	0	8		

Figure 52: SOT23-5 recommended footprint

6.3 DFN8 2x2 package information

Figure 53: DFN8 2x2 package outline

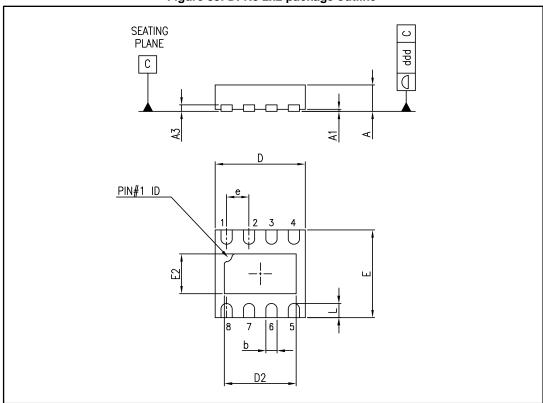
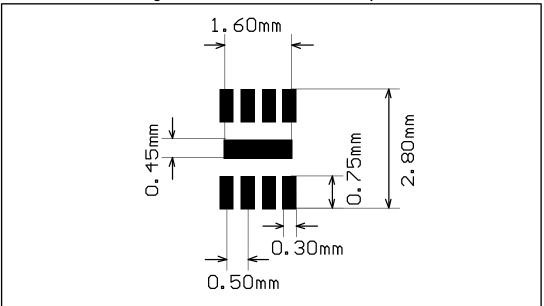



Table 8: DFN8 2x2 mechanical data

	Dimensions								
Ref.		Millimeters							
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А	0.51	0.55	0.60	0.020	0.022	0.024			
A1			0.05			0.002			
А3		0.15			0.006				
b	0.18	0.25	0.30	0.007	0.010	0.012			
D	1.85	2.00	2.15	0.073	0.079	0.085			
D2	1.45	1.60	1.70	0.057	0.063	0.067			
E	1.85	2.00	2.15	0.073	0.079	0.085			
E2	0.75	0.90	1.00	0.030	0.035	0.039			
е		0.50			0.020				
L			0.425			0.017			
ddd			0.08			0.003			

Figure 54: DFN8 2x2 recommended footprint

6.4 MiniSO8 package information

Figure 55: MiniSO8 package outline

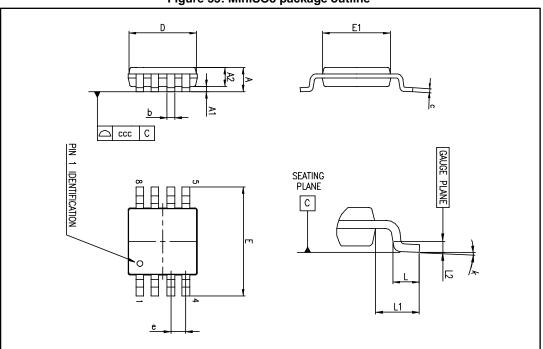


Table 9: MiniSO8 mechanical data

	Dimensions					
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			1.1			0.043
A1	0		0.15	0		0.006
A2	0.75	0.85	0.95	0.030	0.033	0.037
b	0.22		0.40	0.009		0.016
С	0.08		0.23	0.003		0.009
D	2.80	3.00	3.20	0.11	0.118	0.126
Е	4.65	4.90	5.15	0.183	0.193	0.203
E1	2.80	3.00	3.10	0.11	0.118	0.122
е		0.65			0.026	
L	0.40	0.60	0.80	0.016	0.024	0.031
L1		0.95			0.037	
L2		0.25			0.010	
k	0°		8°	0°		8°
ccc			0.10			0.004

6.5 SO8 package information

Figure 56: SO8 package outline

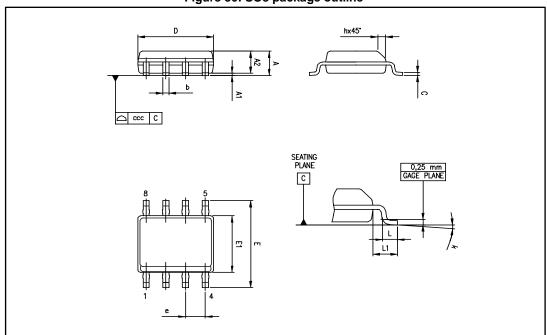


Table 10: SO8 mechanical data

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max
А			1.75			0.069
A1	0.10		0.25	0.004		0.010
A2	1.25			0.049		
b	0.28		0.48	0.011		0.019
С	0.17		0.23	0.007		0.010
D	4.80	4.90	5.00	0.189	0.193	0.197
Е	5.80	6.00	6.20	0.228	0.236	0.244
E1	3.80	3.90	4.00	0.150	0.154	0.157
е		1.27			0.050	
h	0.25		0.50	0.010		0.020
L	0.40		1.27	0.016		0.050
L1		1.04			0.040	
k	0°		8°	0°		8°
ccc			0.10			0.004

6.6 QFN16 3x3 package information

Figure 57: QFN16 3x3 package outline

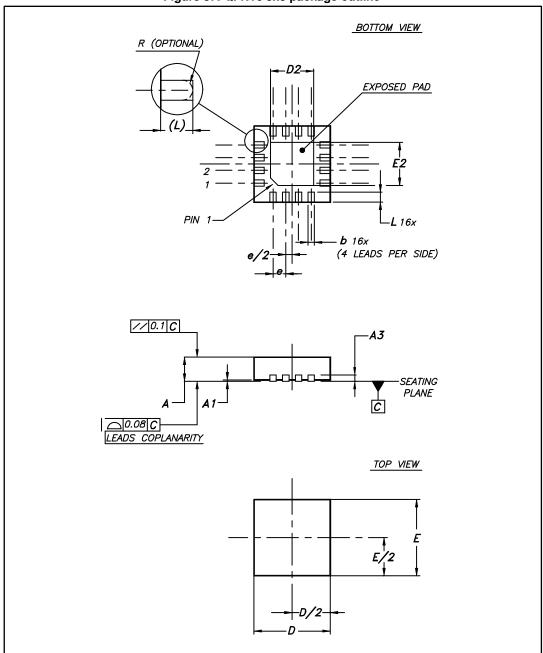
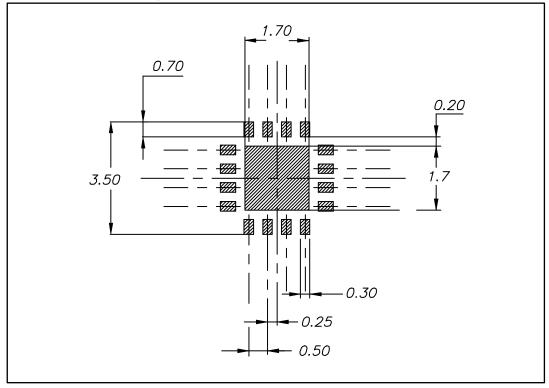



Table 11: QFN16 3x3 mechanical data

	Dimensions					
Ref.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	0.80	0.90	1.00	0.031	0.035	0.039
A1	0		0.05	0		0.002
A3		0.20			0.008	
b	0.18		0.30	0.007		0.012
D	2.90	3.00	3.10	0.114	0.118	0.122
D2	1.50		1.80	0.059		0.071
Е	2.90	3.00	3.10	0.114	0.118	0.122
E2	1.50		1.80	0.059		0.071
е		0.50			0.020	
L	0.30		0.50	0.012		0.020

Figure 58: QFN16 3x3 recommended footprint

6.7 TSSOP14 package information

Figure 59: TSSOP14 package outline

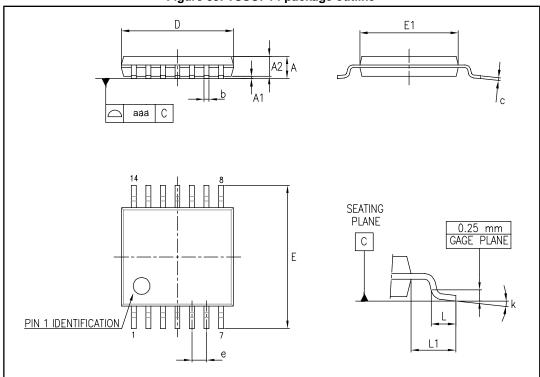


Table 12: TSSOP14 mechanical data

	Dimensions						
Ref.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			1.20			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0089	
D	4.90	5.00	5.10	0.193	0.197	0.201	
Е	6.20	6.40	6.60	0.244	0.252	0.260	
E1	4.30	4.40	4.50	0.169	0.173	0.176	
е		0.65			0.0256		
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1		1.00			0.039		
k	0°		8°	0°		8°	
aaa			0.10			0.004	

7 Ordering information

Table 13: Order codes

Order code	Temperature range	Package	Packaging	Marking
TSZ121ICT		SC70-5	Tape and reel	K44
TSZ121ILT		SOT23-5		K143
TSZ122IQ2T		DFN8 2x2		K33
TSZ122IST	-40 to 125 °C	MiniSO8		K208
TSZ122IDT		SO8		TSZ122I
TSZ124IQ4T		QFN16 3x3		K193
TSZ124IPT		TSSOP14		TSZ124I
TSZ121IYLT (1)		SOT23-5		K192
TSZ122IYDT (1)	40.45.405.00	SO8		K192D
TSZ122IYST (1)	-40 to 125 °C automotive grade	MiniSO8		K192
TSZ124IYPT (1)		TSSOP14		TSZ124IY

 $^{^{(1)}}$ Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q002 or equivalent.

8 Revision history

Table 14: Document revision history

Date	Revision	Changes	
16-Aug-2012	1	Initial release.	
25-Apr-2013	2	Added dual and quad products (TSZ122 and TSZ124 respectively) Updated title Added following packages: DFN8 2x2, MiniSO8, QFN16 3x3, TSSOP14 Updated Features Added Benefits and Related products Updated Description Updated Table 1 (Rthja, ESD) Updated Table 3 (Vio, ΔVio/ΔT, CMR, Avd, ICC, en, and Cs) Updated Table 4 (Vio, ΔVio/ΔT, CMR, Icc, en, and Cs) Updated Table 5 (Vio, ΔVio/ΔT, CMR, SVR, EMIRR, Icc, ts, en, and Cs) Updated Table 5 (Vio, ΔVio/ΔT, CMR, SVR, EMIRR, Icc, ts, en, and Cs) Updated curves of Section 3: Electrical characteristics Added Section 4.7: Capacitive load Small update Section 4.9: Optimized application recommendation (capacitor) Added Section 4.10: EMI rejection ration (EMIRR) Updated Table 10: Order codes	
11-Sep-2013	3	Added SO8 package for commercial part number TSZ122IDT Related products: added hyperlinks for TSV71x and TSV73x products Table 1: updated CDM information Figure 6, Figure 7: updated X-axes titles Figure 12: updated X-axis and Y-axis titles Figure 19: updated title Figure 26: updated X-axis (logarithmic scale) Figure 27 and Figure 28: updated Y-axis titles	
23-May-2014	4	Table 1: updated ESD information Table 5: added footnote 3 Table 10: Order codes: added automotive qualification footnotes 1 and 2; updated marking of TSZ122IST. Updated disclaimer	
09-May-2016	5	Updated document layout Table 13: "Order codes": added new automotive grade order code TSZ122IYD, updated footnotes of other automotive grade order codes.	
07-Feb-2017	6	Table 3, Table 4, and Table 5: added parameter "Low-frequency peak-to-peak input noise" (∫e _n). Figure 26: "0.1 Hz to 10 Hz noise": updated legend (0.75 μVpp instead of 0.2 μVpp)	
12-Apr-2017	7	Updated footnote related to TSZ122IYDT in <i>Table 13: "Order codes"</i> . Minor changes throughout the document.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

