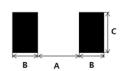


Metal Composite Power Inductor Specification Sheet

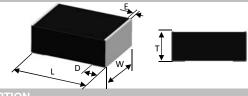
CIGW201610GH1R5MLE (2016 / EIA 0806)

APPLICATION


Smart phones, Tablet, Wearable devices, Power converter modules, etc.

FEATURES

Small power inductor for mobile devices
Low DCR structure and high efficiency inductor for power circuits.
Monolithic structure for high reliability
Free of all RoHS-regulated substances
Halogen free



RECOMMENDED LAND PATTERN

	Unit : mm
TYPE	2016
Α	0.8
В	0.8
С	1.8

DIMENSION

TYPE	Dimension [mm]							
L W		W	T	D				
2016	2.0±0.2	1.6±0.2	1.0 max	0.5±0.2				

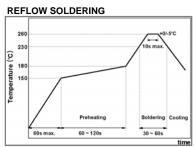
DESCRIPTION

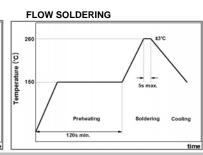
Part no.	Size	Thickness	Inductance I	Inductance tolerance	DC Resista	ance [mΩ]	Rated DC Current (Isat) [A] Rated DC Current (Irms) [A			urrent (Irms) [A]
	[inch/mm] [mm] (max)	[uH]	(%)	Max.	Тур.	Max.	Тур.	Max.	Тур.	
CIGW201610GH1R5MLE	0806/2016	1.0	1.5	±20	85	72	3.1	3.5	2.1	2.4

- * Inductance : Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)
- * DC Resistance : Measured with a Resistance HI-TESTER 3541(HIOKI) or equivalent
- * Maximum allowable DC current: Value defined when DC current flows and the initial value of inductance has decreased by 30% or when current flows and temperature has risen to 40°C whichever is smaller. (Reference: ambient temperature is 25°C±10)

(Isat): Allowable current in DC saturation: The DC saturation allowable current value is specified when the decrease of the initial inductance value at 30% (Reference: ambient temperature is 25°C±10)

(Irms): Allowable current of temperature rise: The temperature rise allowable current value is specified when temperature of the inductor is raised 40°C by DC current. (Reference: ambient temperature is 25°C±10)


- * Absolute maximum voltage : Absolute maximum voltage DC 20V.
- * Operating temperature range : -40 to +125°C (Including self-temperature rise)


PRODUCT IDENTIFICATION

<u>CIG</u>	<u>w</u>	<u> 2016</u>	<u>10</u>	<u>GH</u>	<u>1R5</u>	<u>M</u>	<u>L</u>	<u>E</u>
(1)	(2)	(3)				(7)	(8)	(9)

- (1) Power Inductor
- (3) Dimension (2016: 2.0mm x1.6 mm)
- (5) Remark (Characterization Code)
- (7) Tolerance (M:±20%)
- (8) Internal Code
- (9) Packaging (C:paper tape, E:embossed tape)
- (2) Type (W: Metal Composite Wire Wound Type)
- (4) Thickness (10: 1.0mm)
- (6) Inductancε (1R5: 1.5 uH)

RECOMMENDED SOLDERING CONDITION

IRON SOLDERING	
Temperature of	280 ℃ max.
Soldering Iron Tip	280 C max.
Preheating	150°C min.
Temperature	130 C IIIII.
Temperature	ΔT≤130 °C
Differential	$\Delta 1 \leq 150 \text{ C}$
Soldering Time	3sec max.
Wattage	50W max.

PACKAGING

Packaging Style	Quantity(pcs/reel)
Embossed Taping	3000 pcs

Item	Specified Value		Test Condition		
Solderability	More than 90% of terminal electrode should be soldered newly.	150~180°C for 2~3 min	After being dipped in flux for 4±1 seconds, and preheated at $150 \sim 180^{\circ}\!$		
Resistance to Soldering	No mechanical damage. Remaining terminal Electrode: 75% min. Inductance change to be within ±20% to the initial.		for 4±1 seconds, and preheated at the specimen shall be immersed in ±0.5 seconds.		
Thermal Shock (Temperature Cycle test)	No mechanical damage Inductance change to be within ±20% to the initial.	Repeat 100 cycles under -40±3°C for 30 min → 85	r the following conditions. ±3°C for 30 min		
High Temp. Humidity Resistance Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, 85%RH, for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.			
Low Temperature Test	No mechanical damage Inductance change to be within ±20% to the initial.	Solder the sample on PC at -55±2°C for 500±12 ho Measure the test items a humidity for 24hours.	•		
High Temperature Test	No mechanical damage Inductance change to be within ±20% to the initial.	hours.	CB. Exposure at 125±2°C for 500±12 fter leaving at normal temperature and		
High Temp. Humidity Resistance Loading Test	No mechanical damage Inductance change to be within ±20% to the initial		Current for 500±12 hours. fter leaving at normal temperature and		
High Temperature Loading Test	No mechanical damage Inductance change to be within ±20% to the initial	85±2°C, Rated Current for 500±12 hours. Measure the test items after leaving at normal temperature and humidity for 24 hours.			
Reflow Test	No mechanical damage Inductance change to be within ±20% to the initial	Peak 260±5℃, 3 times			
Vibration Test	No mechanical damage Inductance change to be within ±20% to the initial.	CB. Vibrate as apply 10~55Hz, 1.5mm each of three(X,Y,Z) axis (total 6			
	No mechanical damage	Bending Limit; 2mm Test Speed; 1.0mm/sec. Keep the test board at th PCB thickness : 1.6mm			
Bending Test	45	20 R340	Unit :mm		
	No indication of peeling shall occur on the terminal electrode.	W(kgf)	TIME(sec)		
Terminal Adhesion Test	2777777	0.5	10±1		
Drop Test	No mechanical damage Inductance change to be within ±20% to the initial.	Random Free Fall test of 1 meter, 10 drops	n concrete plate.		

Metal Composite Power Inductor

Data Sheet

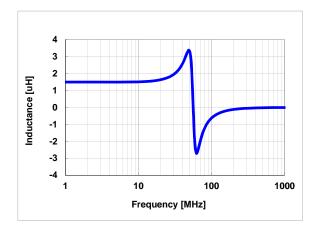
1. Model: CIGW201610GH1R5MLE

2. Description

Part no.	Size Thickness [mm] (max)	Inductance tolera	Inductance tolerance	DC Resista	ance [mΩ]	Rated DC Cu	rrent (Isat) [A]	Rated DC Cu	ırrent (Irms) [A]	
			(%)	Max.	Тур.	Max.	Тур.	Max.	Тур.	
CIGW201610GH1R5MLE	0806/2016	1.0	1.5	±20	85	72	3.1	3.5	2.1	2.4

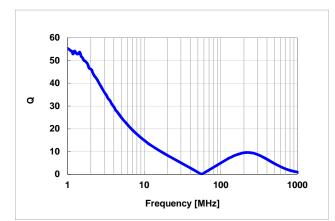
- * Inductance : Measured with a LCR meter 4991A(Agilent) or equivalent (Test Freq. 1MHz, Level 0.1V)
- * DC Resistance : Measured with a Resistance HI-TESTER 3541(HIOKI) or equivalent
- * Maximum allowable DC current: Value defined when DC current flows and the initial value of inductance has decreased by 30% or when current flows and temperature has risen to 40°C whichever is smaller. (Reference: ambient temperature is 25°C±10)

(Isat) : Allowable current in DC saturation : The DC saturation allowable current value is specified when the decrease of the initial inductance value at 30% (Reference: ambient temperature is 25°C±10)

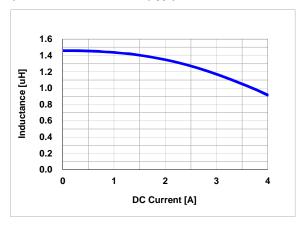

(Irms) : Allowable current of temperature rise : The temperature rise allowable current value is specified when temperature of the inductor is raised 40℃ by DC current. (Reference: ambient temperature is 25℃±10)

- * Absolute maximum voltage: Absolute maximum voltage DC 20V.
- * Operating temperature range : -40 to +125°C (Including self-temperature rise)

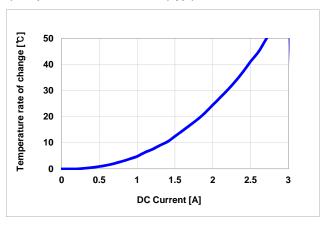
3. Characteristics data


1) Frequency characteristics (Ls)

Agilent E4294A +E4991A , 1MHz to 1,000MHz



2) Frequency characteristics (Q)


Agilent E4294A +E4991A , 1MHz to 1,000MHz

3) DC Bias characteristics (Typ.)

4)Temperature characteristics (Typ.)

Any data in this sheet are subject to change, modify or discontinue without notice The data sheets include the typical data for design reference only. If there is any question regarding the data sheets, please contact our sales personnel or application engineers